Algebra - Complete Guide for SSC Exams
Important Algebraic Identities
Basic Identities (Must Memorize!)
-
(a + b)² = a² + 2ab + b²
-
(a - b)² = a² - 2ab + b²
-
a² - b² = (a + b)(a - b)
-
(a + b)³ = a³ + 3a²b + 3ab² + b³ = a³ + b³ + 3ab(a + b)
-
(a - b)³ = a³ - 3a²b + 3ab² - b³ = a³ - b³ - 3ab(a - b)
-
a³ + b³ = (a + b)(a² - ab + b²)
-
a³ - b³ = (a - b)(a² + ab + b²)
-
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
-
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
-
If a + b + c = 0, then a³ + b³ + c³ = 3abc
Advanced Identities
-
(a + b)⁴ = a⁴ + 4a³b + 6a²b² + 4ab³ + b⁴
-
a⁴ - b⁴ = (a - b)(a + b)(a² + b²)
-
a⁴ + a²b² + b⁴ = (a² + ab + b²)(a² - ab + b²)
Linear Equations
One Variable
ax + b = 0 x = -b/a
Two Variables (Simultaneous)
Method 1: Substitution Method 2: Elimination Method 3: Cross Multiplication
Quadratic Equations
Standard Form
ax² + bx + c = 0
Roots = [-b ± √(b² - 4ac)] / 2a
Sum and Product of Roots
Sum of roots (α + β) = -b/a Product of roots (αβ) = c/a
Nature of Roots
If b² - 4ac > 0 → Real and distinct roots If b² - 4ac = 0 → Real and equal roots If b² - 4ac < 0 → Imaginary roots
Shortcuts & Tricks
Shortcut 1: Quick Squaring
(a + b)² = (a - b)² + 4ab a² + b² = (a + b)² - 2ab a² + b² = (a - b)² + 2ab
Shortcut 2: Value Finding
If a + 1/a = 5, find a² + 1/a²
(a + 1/a)² = a² + 1/a² + 2 25 = a² + 1/a² + 2 a² + 1/a² = 23
Shortcut 3: Factorization Patterns
x² + (a+b)x + ab = (x+a)(x+b) Example: x² + 5x + 6 = (x+2)(x+3)
Solved Examples
Q1: If a + b = 10 and ab = 21, find a² + b²
Solution:
a² + b² = (a+b)² - 2ab = 10² - 2(21) = 100 - 42 = 58
Q2: Factorize: x² - 5x + 6
Solution:
Find two numbers: sum = -5, product = 6 Numbers: -2, -3 x² - 5x + 6 = (x-2)(x-3)
Q3: Solve: 2x + 3 = 11
Solution:
2x = 11 - 3 = 8 x = 4
📖 Next Steps
- Practice Questions: Test your understanding with practice tests
- Study Materials: Explore comprehensive study resources
- Previous Papers: Review exam papers
- Daily Quiz: Take today’s quiz